If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+n-60=0
a = 4; b = 1; c = -60;
Δ = b2-4ac
Δ = 12-4·4·(-60)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-31}{2*4}=\frac{-32}{8} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+31}{2*4}=\frac{30}{8} =3+3/4 $
| 4x-5+9=4x-9 | | C=39.86+0.25x | | 3(x+4)=6x/4 | | 47=h+29 | | 0=2/5(2)+b | | r/12=6/9 | | 8h=-96 | | 6/9=r/12 | | -3(8-x)=-3 | | 87.30=v+18.3 | | 2p^2-7p-30=0 | | 9+4x=4(−x+9)−59 | | 136(30+c)=3 | | d·(-4)=32 | | -113=7a+8(a-1) | | -8k-4=36 | | (c)-(-3)=15 | | r/5+7=10 | | (-7)+b=-11 | | 3=1/5(-5)+b | | x-2(2x+2)=30 | | -320=8(-8+4x) | | 3(3x−7)=20 | | 7•7=1+k | | h–4=–8 | | 3=1/5(-5)b | | 2-9y+2y=37 | | 3(2a+6)= | | (53-x)+(98+x)=180 | | -2k+20=5 | | -9/4=x/108 | | -9(k-17)=-55 |